Printable elastic conductors with a high conductivity for electronic textile applications

نویسندگان

  • Naoji Matsuhisa
  • Martin Kaltenbrunner
  • Tomoyuki Yokota
  • Hiroaki Jinno
  • Kazunori Kuribara
  • Tsuyoshi Sekitani
  • Takao Someya
چکیده

The development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738 S cm(-1) and a record high conductivity of 182 S cm(-1) when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stretchable active-matrix organic light-emitting diode display using printable elastic conductors.

Stretchability will significantly expand the applications scope of electronics, particularly for large-area electronic displays, sensors and actuators. Unlike for conventional devices, stretchable electronics can cover arbitrary surfaces and movable parts. However, a large hurdle is the manufacture of large-area highly stretchable electrical wirings with high conductivity. Here, we describe the...

متن کامل

Optimizing ionic conductivity in doped ceria

David Andersson et al. report calculations revealing how doped oxides with cubic fluorite structures become effective ionic conductors. Cubic fluorite structures, such as ceria (CeO2), can become effective ionic conductors when doped with cations of lesser valence than the host cations. Doped ceria thus has potential as an electrolyte for environmentally friendly solid oxide fuel cells. Anderss...

متن کامل

Solid Electrolytes and Mixed Ionic-Electronic Conductors: An Applications Overview

Solid electrolytes are an unusual group of materials which have high ionic conductivity with negligible electronic conductivity. Examples are now known involving high conductivity of most monovalent and some divalent ions, e.g. Ag+ in RbAg415, Na' in /?-alumina, Li' in H-doped Li,N, 02in 9Zr0, * 1 Y 203 (yttria-stabilised zirconia), Fin PbSnF4 and H + in H U 0 2 P 0 4 * 4 H 2 0 (hydrogen uranyl...

متن کامل

All-printed magnetically self-healing electrochemical devices

The present work demonstrates the synthesis and application of permanent magnetic Nd2Fe14B microparticle (NMP)-loaded graphitic inks for realizing rapidly self-healing inexpensive printed electrochemical devices. The incorporation of NMPs into the printable ink imparts impressive self-healing ability to the printed conducting trace, with rapid (~50 ms) recovery of repeated large (3 mm) damages ...

متن کامل

Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites

Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015